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Many interesting systems of nanometer dimensions form spherically symmetric domains, either by design or
through spontaneous self-assembly. The technique of direct nonradiative resonance energy transfer (DET)
can be used to characterize the morphology of such structures on a nanometer scale. One needs to label the
domain of interest with appropriate donor and acceptor dye moieties. One measures the fluorescence decay
of the donors (ID(t)) in the presence of acceptors. The underlying geometry and physics of the system dictate
how the dyes distribute themselves along the radial axisR of the system, according to concentration profiles
(CD(R), and CA(R)) which need not be uniform. Because DET is sensitive to the distribution of dye
interdistances,ID(t) contains information about the underlying morphology. In this work we obtain an analytic
expression relatingID(t) to the donor/acceptor concentration profiles. This extends our previous contribution
for systems with a plane of symmetry. The expression developed is general and capable of handling geometries
in both extended and/or restricted spaces. It does not require a specific spatial locus for the donors nor does
it require prior calculation of the pair-distribution function of the donor-acceptor distances. The development
also provides one with an analytic expression for the evaluation of the interdistance distribution functions.

Introduction

The morphological characterization of nanoscale structures
is an area of activity fueled by recent advances in materials
science, nanochemistry, and the invention of various novel
microscopies. While the microscopy techniques have generated
impressive images of surface nanodomains, one normally obtains
information only about the geometry of structures larger than
ca. 10 nm. For a complete characterization of the morphology
of a nanodomain, one would like to have information not only
about the size and shape of the domain but also about its
composition and how the various components making up the
system distribute themselves across space. That is, one would
like to determine the concentration profiles of each of the
components across the system. Where sufficient phase contrast
can be established, X-ray and neutron scattering provide
techniques for determining concentration profiles. For organic
materials, neutron scattering is more generally useful because
one can in principle label any component with the deuterium
atoms needed for contrast. The task of synthesizing material
with deuterium-labeled components is not always so simple,
and other methods which require different labeling schemes
would be welcome.
The technique of direct nonradiative electronic (Fo¨rster1)

energy transfer (DET) between donors (D) and acceptors (A)
is also a powerful method for the measurement of distances on
the nanometer scale, particularly for biological2 and organic
systems.3 In this approach, one labels specific sites of interest,

on a large molecule or in a specific domain, with two dyes that
will serve as D and A, respectively. One measures the increase
in the rate of the donor fluorescence decay, from an inherent
value of (1/τD) in the absence of A to a rate of (w + (1/τD)) in
the presence of A. The measured rate of DET is then related
to the distancer separating the centers of the transition dipoles
of D and A by the Fo¨rster relation

whereRo (the Förster radius) is a constant that can be calculated
from the spectroscopic properties of the D/A pair and normally
has a value in the range of 2-7 nm. The factor 3κ2/2 is related
to the orientation of the transition moments of D* and A. For
the case of rapidly reorienting dipoles, the orientationally
averaged value of this factor is exactly equal to unity. For most
other situations lacking strong orientational correlations, this
term takes a value within ca. 10% of unity.4 In this work we
shall assume a value of unity for this factor.
According to eq 1, if all D/A pairs are separated by the same

distancer, as in the case of dyes attached to sites on a large
rigid molecular framework, where experiments are carried out
at sufficient dilution such that no intermolecular DET is possible,
the donor decay profile will be exponential with a decay rate
faster than that of the unquenched decay. Most systems,
however, have a distribution of D/A distances. Subsequent to
pulsed excitation, the observed fluorescence decay functionID(t)
is no longer a simple exponential.ID(t) now displays a faster
decay in the early time region (DET between closely spaced
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pairs) followed by slower decay at longer times (DET between
more distant pairs).
Two factors affect the distribution of the interdistances: the

shape and size of the space in which the D and A are distributed
and the variation of the concentration of D and A over the
nanodomain in the system. Early treatments of DET kinetics
treated systems with uniform D and A distributions over
extended space in three and two dimensions. When the D and
A groups are distributed over domains which are finite in size,
i.e., with at least one dimension on the order ofRo, edge effects
become important. Here one has to take into account the
consequences of the restricted geometry. Initial steps in this
direction were taken by Fayer and co-workers for D-D energy
migration5 and Klafter, Blumen, and others for direct D-A
energy transfer.6 In the Klafter-Blumen (KB) formulation, the
expression for evaluatingID(t) is given by

Here,æ(t,rbo) is the survival probability of the excited donor
due to all DET-related processes;w(r) is the rate of DET given
by eq 1;F(r) is a “site density function” proportional to the
probability distribution of finding a donor-acceptor pair
separated byr; p (the probability of occupation of a site) is a
constant proportional to the acceptor concentration. The
integration is carried over the volume of the microdomain. To
make use of the KB expression, one needs to make a prior
calculation ofF(r) by considering the geometry of the system.
The notationrbo in eq 3 is used to emphasize the fact that the
KB formulation is restricted in application to conditions where
all donors are situated in equivalent environments; i.e., when
each D is in a translationally invariant locusrbo and sees the
same distribution of A’s around it. For example, this applies
to the situation of D and A covering the surface of a sphere,
but it would not apply to the same sphere when the D’s are
moved to the inside. In this case, a D near the surface sees a
different distribution of A’s than one closer to the center.
Recently we were able to extend the KB formalism to

situations lacking translational invariance.7 While this work laid
the foundations of the new methodology, its application was
limited to systems where the concentration profiles have a plane
of symmetry. Concentration profiles describing the distribution
of the D/A labels in systems of spherical symmetry are also
important, because in a large number of cases, the various
coexisting phases making up the system tend to minimize
surface energy by forming spherical shapes. Examples abound
in block copolymer morphology,8 latex films,9 and colloidal
systems such as micelles10 and core-shell latex particles.11 In
this work we wish to extend our formalism to situations where
the concentration profilesCD(R) and CA(R) are functions
describable along the radial axisR of a spherical system.

The Model

We follow a line of development similar to that of our earlier
report.7a Let the position of any point in the sample be specified
by the radial axisR, measuring distance to the center of
symmetry. The observable donor fluorescence intensityID(t)
will be a sum of the elemental intensitiesδID(R,t) emanating
from thin onion-skin-like shells of thickness dR. δID(R,t) is
proportional to the number of donors initially excited in the
shell and also to the product exp{-t/τD}æ(R,t). Hereæ(R,t) is
the local donor survival probability due to all DET-related
processes. The number of donors initially excited in the shell

is in turn proportional to the local concentration of ground-
state donors,CD(R), and we can write

The integration is carried over the radial thickness of the sample.
In eq 4,CD(R) can have any convenient unit of concentration,
and for simplicity of notation, we omit the use of all propor-
tionality constants. The problem of evaluatingID(t) is now
reduced to one of finding the local DET-related survival
probabilityæ(R,t), which takes the form of a KB-type equation
(eq 3). The latter assertion is valid because the KB expression
holds true for systems in which all the donor loci are equivalent.
Because of the symmetry of the concentration profiles, this is
the case for the donors within theR to R+ dR shell. In light
of our previous arguments,7 in the KB eq 3, we can replace the
termpF(r) by CA and write

where the differentialCA(R) dV is now interpreted as equal to
the mean number of acceptor molecules existing in a spherical
shell of thickness dr and radiusr, surrounding an excited donor
molecule located in a spherical shell of the sample, betweenR
andR + dR.
We can calculateCA dV by the following procedure. In

Figure 1 we depict an excited donor positioned atRD and
surrounded by a spherical shell of radiusr. The graduated
shading represents some arbitrary variation ofCA(R) within the
shell. We need to evaluate the mean number of acceptors within
the shaded shell. Considering the spherical symmetry, we note
thatCA is a constant within any thin scooplike cut taken out of
the shaded shell, say betweenRA andRA + dRA. The resulting
section, when viewed in the radialR direction, resembles a
concave ring of volume dVring. Therefore

Figure 1 shows that the integration limits span theRdomain of
the shaded shell. The lower limit must be in the form of an
absolute value because, for radii, only positive values are
allowed. In Appendix A we utilize geometrical considerations
to show

ID(t,rbo) ) exp{-t/τD}æ(t,rbo) (2)

æ(t,rbo) ) exp{-p∫V[1- exp{-tw}]F(r) dV} (3)

Figure 1. Schematic representation of a nonuniform distribution of
acceptors (graduated shading) surrounding an excited donor positioned
at a distanceRD from the center of symmetryO. The figure shows
only the acceptors contained within a spherical shell of radiusr and
thickness dr. The shell spans anR domain of|RD - r| to (RD + r).
The acceptor concentration is uniform within the ring formed by taking
a scooplike slice of the shaded shell, here cut between the two surfaces
at RA andRA + dRA.

ID(t) ) exp{-t/τD}∫CD(R) æ(R,t)R2 dR (4)

æ(R,t) ) exp{-∫V[1- exp{-tw}]CA(R) dV} (5)

CA dV)∫|RD - r|
(RD + r)

CA(RA) dVring (6)
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Substituting this result in eq 6 we obtain

Equation 8, when substituted in eq 5, completes the formal
solution of the problem.
At this point, we find it useful to define a new function that

simplifies notation, will have physical significance, and juxta-
poses the present formulation with the earlier works of Fo¨rster,
Klafter, and Blumen.1,6 We define a new number-density
function〈CA〉, obtained by dividing the total number of acceptors
in the shaded shell of Figure 1 by the volume element of that
shell.

〈CA(RD,r)〉 can be interpreted as the directionally-averaged
concentration of acceptors that a donor sees at a distancer
around itself. Using Figure 1, this can be visualized if we
homogenize the graded shading through the whole available
volume of the shell. By using eqs 4, 5, and 9, while dropping
the subscripts forR, the final result is simplified to

A discussion about the use of eqs 10 is in order. First, the
expressions are exact and describe DET in all systems of
spherical symmetry. The only assumption involved is that
pertaining to the orientation factor, where we have somewhat
arbitrarily set the factor 3κ2/2 in eq 1 to unity. Next, while
CD(R) can have any unit of concentration,CA(R) must have units
expressed as number density. Third, from the definition given
in eq 9, it follows that 4πr2〈CA(R,r)〉 is proportional to the
probability distribution of finding an acceptor at a distancer
from a D positioned atR. For the special cases where all the
donor loci are equivalent,〈CA(R,r)〉 becomes proportional to
the site density functionF(r) first formulated by Klafter and
Blumen in eq 3.6 Consequently, an interesting feature of the
present formalism is that one is now provided with an analytic
relationship (c.f. eq 10d) for calculating the pair-distribution
functions.
In eqs 10a,c we have set the limits of integration from zero

to infinity for the convenience of dealing with continuously
extended concentration profiles. No particular difficulty is
caused here, because if one deals with restricted geometries or
samples of finite size, thenC(R) will be associated with
appropriate truncating functions that will restrict the domain of
integration. We shall see some examples of truncation in the
applications section described below. The lower limit of
integration implicitly allows for the possibility of D-A pairs
with r ) 0. Some workers correct for this by takingr ) σ as
the lower limit, whereσ is the sum of the D+ A van der Waals
radii, typically 0.3-1.0 nm. By takingσ ) 0 we gain analytical

simplicity and the error introduced for analyzing experimental
fluorescence decay data is negligible, because the very high rate
of DET ensures that no significant emission is detectable from
such closely spaced pairs. These closely space pairs will quench
excited donors, and their presence contributes to the quantum
efficiency of energy transfer. Under these circumstances, the
quantitative importance of these pairs can be assessed by
comparing the DET quantum yield measured by steady state
spectroscopy with that calculated by integrating the donor decay
profile.
For the purpose of numerical evaluation of eq 10, it is useful

to note that a decay experiment is usually followed for 0< t <
6τD. During this time window, the functionr2 (1 - exp(-tw))
is sharply peaked, with a maximum nearr ≈ Ro, a feature which
is almost independent of the timet. Depending on the degree
of numerical accuracy desired, one need not carry the integration
over r to more than several timesRo.

Application to Specific Systems

In this section we consider various modes of DET in the
restricted space of a sphere of radiusRs. We expect that in
real systems one deals with concentration profiles that most
likely are spatially extended and nonuniform. In such cases
one needs a pertinent physical theory to describe the concentra-
tion profiles. The nonuniform concentration profiles can occur
as a result of the natural tendency of the system for microphase
separation (equilibrium systems) or because one has arrested
the interdiffusion of initially separated donors and acceptors.
At present we are actively applying the new methodology to
the analysis of data from both types of these systems.9d,e

In this work, we will consider uniform and sharply discon-
tinuous concentration profiles to show the simplicity and power
of the present formulation for the derivation of theID(t) profile.
The extension of these examples to unbounded spaces with
nonuniform profiles will be straightforward. That is, once
〈CA(R,r)〉 is calculated from eq 10d, the desired solution is
formally available.
In Figure 2 we depict the various spherically symmetric

donor/acceptor distributions that we shall be considering here.
Only the case of an infinitely extended isotropic mixture (Case
A) is not shown. The first four cases we treat were worked
out by others, the first by Fo¨rster1 and the next three by Klafter
and Blumen.6 These examples involve situations where all
donors have equivalent loci; i.e., each donor sees the same
distribution of acceptors. The other cases we consider are for
situations involving nonequivalent donor positions and to our
knowledge have not been dealt with before.

dVring ) 2πr
RD

RA dRA dr (7)

CA dV) 2πr dr
RD
∫|RD - r|

(RD + r)
dRA RACA(RA) (8)

〈CA(RD,r)〉 ≡
CA dV

4πr2 dr
) 1
2rRD
∫|RD - r|

(RD + r)
dRA RACA(RA) (9)

ID(t) ) exp{-t/τD}∫0∞dR R2CD(R) æ(R,t) (10a)

æ(R,t) ) exp{-g(R,t)} (10b)

g(R,t) ) 4π∫0∞dr r 2〈CA(R,r)〉[1- exp{- t
τD
(Ro/r)

6}] (10c)

〈CA(R,r)〉 ) 1
2rR∫|R- r|

(R+ r)
dR′ R′CA(R′) (10d)

Figure 2. Depiction of the various random but uniform distributions
of donors (b) and acceptors (O) pertaining to cases B-G of the text.
In situations B-D, all donors have translationally invariant positions.
In situations D and G the acceptors occupy all space outside of the
spheres.
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A. Donors in an Isotropic Three-Dimensional Medium
of Acceptors. Here the acceptors uniformly fill all 3-D space
with a uniform concentrationCA, all having equivalent loci. The
resulting expression forID(t), also known as the Fo¨rster
expression, is independent of how the donors occupy space.
CA is a constant, and from eq 10d we find〈CA(R,r)〉 ) CA.
Equation 10c yields the exponent function, and we obtain12

B. Surface-to-Surface DET. Here both donors and accep-
tors are distributed over the surface of a sphere of radiusRs,
each with uniform surface densitiesCD andCA (cf. Figure 2b).
All donors have equivalent loci. The concentration profiles are
given byδ functions.

When applied to eq 10a, eq 12 dictates thatR can only equal
Rs. Next, we find 〈CA(Rs,r)〉 by evaluating ∫ |Rs- r|

(Rs+ r) dR′
R′δ(R′-Rs). The latter has a nonzero value only ifRs lies in
the domain of integration. Since the upper limit is clearly higher
thanRs, to be in the proper range, we must have|Rs - r| e Rs.
That is, 0< r < 2Rs, yielding

Now the substitution of eq 14 in eq 10c yields12

where the functiong2-D(t) corresponds to the exponent function
for DET on an infinitely-extended two-dimensional flatland,
originally derived by Hauser et al.13 Equation 15b shows that
for values of (Rs/Ro) g 1, the higher order terms are negligible
and DET on the surface of a sphere is practically identical to
DET on a two-dimensional flat surface.
C. Surface-to-Inside DET. Here the donors are on the

surface of a sphere and acceptors uniformly distributed on the
inside of it (cf. Figure 2c). Again, all donors have equivalent
loci, andCD is represented by eq 12, while

H defines a Heaviside truncating step function, such thatH(x)
has either a value of unity (forx > 0) or a value of zero (forx
< 0). Equation 12 implies thatR) Rs. To find 〈CA(Rs,r)〉, we
substitute eq 16 into eq 10d and note that the upper limit of
integration cannot be higher thanRs. Also, as long asr < 2Rs,

we deal with a lower limit that remains within the range allowed
by eq 16. These observations are expressed by

Observe that in eq 17, as well as eq 14, the quantity 4πr2〈CA-
(Rs,r)〉 is proportional to the corresponding pair-distribution
function (F(r)) of distances between D’s and A’s. These
functions were previously derived by KB and other workers
through the application of various procedures.6,14 The substitu-
tion of eqs 12 and 17 in eq 10 yields

whereg3-D(t) was defined in eq 11b for the simplest possible
case, i.e., that of DET in an isotropic three-dimensional medium.
The asymptotic form of eq 18a shows that the higher order terms
cannot be neglected, and only when the ratio (Rs/Ro) is much
larger than unity is the approximation in eq 18b justified.
D. Surface-to-Outside DET (Complementary to Surface-

to-Inside DET). Here the donors cover the surface of the sphere
while acceptors uniformly fill the outer space of the sphere (cf.
Figure 2d). We can evaluate the appropriate expressions by
noting an interesting property of DET systems which we call
complementary. Observe that DET-related survival probabilities
to various parts of space are independent and multiplicative (cf.
eq 10). If we divide all space arbitrarily to complementary parts
I and II, we can write

whereg3-D(t) is the exponent function corresponding to DET
in 3-D isotropic space (the Fo¨rster expression, eq 11b). It
follows thatg(t) for the geometry of this section can be found
as the difference ofg3-D(t) and that given by eq 18a of section
C.

E. Inside-to-Surface DET. This is the same geometry as
that of section C except that the D’s and A’s have exchanged
positions (cf. Figure 2E). DET is, however, not symmetrical
to the exchange of the donor/acceptor positions. This is the
first example we consider where not all donor locations are
equivalent and the interdistance distribution function of donor-
acceptor pairs becomes dependent on the donor position. The
use of the KB eq 3 is no longer justified. For this case, the
acceptor profile is the same as that of case B (eq 13), while

Substituting eq 13 in eq 10d shows that we need to evaluate
∫|R- r|
(R+ r)dR′ R′δ(R′-Rs) which has a nonzero value only if the

ID(t) ) exp{-t/τD} exp{-g3-D(t)} (11a)

g3-D(t) ) 2γ3(t/τD)
1/2; γ3 ) 2/3π

3/2CARo
3;

2/3π
3/2 ) 3.712 22 (11b)

CD(R) ) CDδ(R-Rs) (12)

CA(R′) ) CAδ(R′-Rs) (13)

〈CA(R,r)〉 )
CA

2r
0< r < 2Rs (14)

ID(t) ) exp{-t/τD} exp{-g(t)} (15a)

g(t) ) 2πCA ∫02Rsdr r [1- exp{- t
τD
(Ro/r)

6}]
) g2-D(t)[1+ 0.0231(Ro/Rs)

4(t/τD)
2/3 -

7.21× 10-5(Ro/Rs)
10(t/τD)

5/3 + ...] (15b)

g2-D(t) ) 2γ2(t/τD)
1/3; γ2 ) π

2
Γ(2/3)CARo

2;

π
2

Γ(2/3) ) 2.127 05 (15c)

CA(R′) ) CAH(Rs-R′) 0< R′ < Rs (16)

〈CA(Rs,r)〉 )
CA

2rRs
∫|Rs- r|

Rs dR′ R′ )
CA

2 (1- r
2Rs);
0e r e 2Rs (17)

g(t) ) 2πCA ∫02Rsdr r 2(1- r
2Rs)[1- exp{- t

τD
(Ro/r)

6}]
) 1/2g3-D(t)[1+ 0.566 785(Ro/Rs)(t/τD)

1/6 -

0.035 262(Ro/Rs)
3(t/τD)

1/2 + ...] (18a)

ID(t) ≈ exp{-t/τD} exp{-1/2g3-D(t)} only if
Ro
Rs

. 1

(18b)

æall space) æ3-D(t) ) æI(R,t) æII(R,t) (19)

gall space) g3-D(t) ) gI(R,t) + gII(R,t) (20)

g(t) ) 1/2g3-D(t)[1- 0.566 785(Ro/Rs)(t/τD)
1/6 +

0.035 262(Ro/Rs)
3(t/τD)

1/2 ...] (21)

CD(R) ) CDH(Rs-R) (22)
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peak of theδ function lies in the domain of integration. This
means that both conditions|R - r| < Rs and (R + r) > Rs
should be satisfied simultaneously. By inspection, the restric-
tions can be expressed as (Rs - R) e r e (Rs + R), leading to

which, for the purpose of numerical evaluation, can be expressed
in terms of incompleteγ functions. It should be mentioned
that experimental models of inside-to-surface DET for which
(Rs/Ro) . 2 would not be very illuminating for experimental
studies because the observable donor fluorescence signal will
be dominated from core portions of the sample unaffected by
energy transfer.
F. Inside-to-Inside DET. Here both donors and acceptors

are uniformly distributed inside of the sphere (cf. Figure 2f).
Again, not all donor loci are equivalent. In this case,CD(R) )
CDH(Rs-R), andCA(R) ) CAH(Rs-R). We find (Appendix
B)

Substitution in eq 10c yields

The expression for eq 26b looks cumbersome to handle.
However, for the purpose of data fitting, it can be expressed in
terms of incompleteγ functions that are amenable to facile
numerical integration.15

From the past literature we are aware of a single report where
an attempt was made to fit experimental energy transfer data
from micellar solutions to the inside-to-inside DET model.16 In
order to deriveID(t) for this case, the authors assume an
approach equivalent to that of KB, which implicitly presumes
equivalent loci for all donors and requires input of the function
for the donor-acceptor distance distribution of random points
in a sphere. This function has been obtained by various methods
as14,17

The substitution of a distance-distribution function such as
eq 27 in the KB eq 2 is justifiable only if the geometry of the
system implies that all the locirbo of the excited donors are
equivalent. This is certainly true when the donors are all on
the surface of the sphere (cf. Figure 2c). However, when the

donors are on the inside of the sphere, not all loci are equivalent.
For example, equally separated pairs on the outer periphery of
the sphere are more probable than those near the core. The
use of KB eq 2 is then not justifiable, and eq 26 must be used
instead.
G. Inside-to-Outside DET (Complementary to Inside-to-

Inside DET). Here the donors are on the inside and the
acceptors on the outside of the sphere (cf. Figure 2g). The
geometry here is complementary to that depicted in Figure 2f.
Using arguments similar to those leading to eq 19, we obtain

whereg3-D(t) is the exponent function of the Fo¨rster expression
(eq 11) andg(R,t) is that given in eq 26b.

Conclusion

We have obtained a theoretical expression (eqs 10) for the
fluorescence decay of excited chromophores (ID(t)) in the
presence of acceptors, under conditions where the donor/
acceptor concentration profiles are nonuniform but have spheri-
cal symmetry. The expression developed is general and capable
of handling geometries in both extended and/or restricted spaces.
It does not require a specific spatial locus for the donors nor
does it require prior calculation of the pair-distribution function
of the donor-acceptor distances. The method enables one to
evaluateID(t) from a knowledge of the donor and acceptor
concentration profiles. It reduces to known expressions in the
case of DET in infinite media and allows simplified asymptotic
solutions or facile numerical analysis for systems with more
complicated concentration profiles. When desired, the present
methodology would also provide one with an analytic expression
for the evaluation of pair distribution functions (cf. eq 10d).
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Appendix A

The volume element of the ring-shaped object (dVring) can
be calculated as follows. Consider the interpenetration volume
(V) of two spheres of radiiRA andr, respectively. The ring is
obtained through the differential growth of the radii by dRA
and dr, respectively. To calculateV, we refer to Figure 1 and
divide the interpenetration volume across the plane of intersec-
tion intoV ) V1 + V2, obtaining the segments of two spheres of
heightsh1 andh2, with corresponding radiiRA and r, respec-
tively. From the geometry of the figure, we can write

The above can be solved to obtain

The volume of each segmentVi is given by

〈CA(R,r)〉 )
CARs
2rR

(Rs - R) e r e (Rs + R) (23)

ID(t) ) exp{-t/τD}∫0RsdR R2 exp{-g(R,t)} (24a)

g(R,t) )
2πCARs

R ∫(Rs- R)

(Rs+ R)
dr r[1- exp{- t

τD
(Ro/r)

6}]
(24b)

〈CA(R,r)〉 ) CA 0e r e (Rs + R)

)
CA

4rR
(Rs

2 - (R- r)2) (Rs - R) e r e (Rs + R)

) 0 elsewhere

(25)

ID(t) ) exp{-t/τD}∫0RsdR R2 exp{-g(R,t)} (26a)

g(R,t) ) 4πCA ∫0(Rs- R)
dr r 2[1- exp{- t

τD
(Ro/r)

6}] +

πCA

R ∫(Rs- R)

(Rs+ R)
dr r (Rs

2 - (R- r)2)[1- exp{- t
τD
(Ro/r)

6}]
(26b)

F(r) ) 3x2(1- (x/2))2(1+ (x/4)); x) (r/Rs) (27)

ID(t) ) exp{-t/τD} exp{-g3-D(t)}∫0RsdR R2 exp{-g(R,t)}
(28)

h1 + h2 ) RA - (RD - r) (A1)

r2 - (r - h2)
2 ) RA

2 - (RD - r + h2)
2 (A2)

h1 )
r2 - (RD - RA)

2

2RD
(A3)

h2 )
RA
2 - (RD - r)2

2RD
(A4)
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In this way we can write an expression forV ) V1 + V2 and
solve for the differential as

Appendix B

We need to evaluate

The Heaviside function sets theR′ values in the range of 0e
R′ e Rs. Therefore

The integrals are easily worked out. The restrictions are
expressed as follows:|R- r| g Rs impliesr g (Rs + R); |R-
r| e Rs implies r e (Rs + R), leading to eq 25 of the text.
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Vi ) π
3
hi
2 (3ri - hi) (A5)

dVring ) ( ∂
2V

∂r ∂RA) dr dRA ) 2πr
RD

RA dRA dr (A6)

〈CA(R,r)〉 )
CA

2rR∫|R- r|
(R+ r)

dR′ R′H(Rs-R′) (B1)

if |R- r| g Rs, then〈CA〉 ) 0

if |R- r| e Rs and (R+ r) g Rs, then〈CA〉 )
CA

2rR
×

∫|R- r|
Rs dR′ R′

if (R+ r) e Rs, then〈CA〉 )
CA

2rR
×

∫|R- r|
(R+ r)

dR′ R′ g(t) )∫0∞
[1- exp[-tw(r)]] rm dr )

Γ[(5-m)/6]
(m+ 1)

Ro
(m+1)(t/τ°D)

(m+1)/6
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